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LElTER TO THE EDITOR 

Family of growth fractals with continuously tunable chemical 
dimension 

Daniel C Hong,t Shlomo Havlin$ and H Eugene Stanley? 
t Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 
02215, USA 
$ Division of Computer Research and Technology, National Institutes of Health, Bethesda, 
MD 20205, USA 

Received 27 August 1985 

Abstract. We introduce a new class of statistical growth fractals which is of interest because 
the chemical dimension d,  is continuously tunable. We also study other exponents charac- 
terising these fractals. 

There has been considerable recent interest in uncovering the fashion in which the 
familiar laws of physics are modified for fractal objects, in part because of the large 
number of important realisations of fractals in nature [l-81. It has only recently 
become appreciated that the physics of fractals is determined by more than just ‘the’ 
fractal dimension df which describes how the cluster mass N scales with the cluster 
radius R, 

N - Rdf. ( l a )  
Several additional fractal dimensions have recently been found to be of use. One of 
these is the chemical dimension d, that describes how the cluster mass scales within 
a chemical distance 1 (the chemical distance is the length of the shortest path on the 
fractal connecting two sites) [9-141, 

N - I d ! .  (1b) 
It is of course very important to seek relations among the various new fractal 

dimensions-indeed, it was the search for relations among critical exponents that led 
to the discovery of scaling laws 20 years ago and eventually to the development of the 
renormalisation group. 

Here we study the relation between the two exponents d, and d, by introducing a 
new family of cluster growth models in which d, can be varied in a controlled fashion 
over a wide range of values. 

The clusters are grown by the following procedure. First we place a seed particle 
at the origin of a d-dimensional lattice of coordination number z. At step 1 = 1, we 
randomly choose a certain number B( l )  of the z neighbours and occupy these sites. 
These sites constitute the first shell, and clearly have chemical distance 1 = 1 from the 
origin. The remaining z -B( l )  sites will be regarded as ‘blocked’ for the duration of 
the growth process. At step 1 = 2, we consider z2 available (unblocked and unoccupied) 
neighbours of the first shell. We randomly occupy B(2) of these, and block the 
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Figure 1. Schematic illustration of how a cluster grows for E (  I) = cl" with c = 2 and a = 0.5, 
where E ( / )  is the number of growing sites at shell /, and a is the tunable parameter. In 
figure l (a) ,  at step I =  0, the seed particle (A) is at the origin of a square lattice with four 
perimeter sites (0). In figure l (b) ,  at step I =  1, we choose B(1)  ( = 2 ~ 1 ' . ~ = 2 )  sites (0) 
randomly out of four perimeter sites of figure l (a )  and occupy them. The remaining sites 
( X )  are blocked forever. Five new perimeter sites are created. In figure l(c),  at step 1 = 2, 
B(2) (=2  x ~ O . '  = 3 )  sites are added to randomly chosen perimeter sites (0) of figure l(b) 
and the rest are blocked ( x ) .  Remaining shells grow similarly. 

remainder. This process is continued until a cluster with a total of I,,, chemical shells 
has been created, with 

B( I )  - I" ( 2 a )  

occupied sites in chemical shell I ;  here a is the tunable parameter?. The total cluster 
mass after I shells have been added is given by 

N(1)  = B(Z') - I d ! ,  
l '=  1 

dl=  CY + 1 .  (2c) 

A schematic illustration of our cluster model is shown in figure 1, and a typical cluster 
is shown in figure 2. 

We begin by considering how the Pythagorean distance R scales with the chemical 
distance 1. From equations ( l a ,  b )  R d f -  I d :  so 

R - I s ,  ( 3 a )  

Figure 2. A typical cluster grown on a square lattice with d, = 1.2. 

t The case a = 0 was considered recently [ 151. 
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Table 1. Data for i; = d;:,,, d i ,  d, and fd, in two dimensions. is increasing and d, is 
decreasing as dl increases, but d: has a maximum. The fracton dimension d, is also 
monotonically increasing. 

dl ;=dit , ,  dl, d w  td, 

0.5 f 0.03 1 .o 0.67 f 0.02 2.0 3.0f 0.1 
1.2 0.73 f 0.03 2.2 f 0.1 3.0f 0.1 0.55 i0 .03  
1.4 0.80*0.03 2.37f0.1 2.9 i 0.1 0.60 f 0.03 
1.64 0.88 i 0.03 2.30i0.1 2 . 6 i 0 . 1  0.7 i 0.03 

2 .4 i0 .1  0.77 f 0.03 1.8 0.93 f 0.03 2.29i0.1 

T8ble 2. Data for 5 in d = 3 , 4  and 5. 

d = 3  d = 4  d = 5  

d, ;= d-! min dl ;=d-!  mm d, ; = d - !  mm 

1 .O 0.50 i 0.01 1.0 0.5i0.01 1.0 0.5i0.01 
1.5 0 .67i0.03 1.3 0.5i0.03 1.5 0 .5 i0 .02  
2.0 0.78 f 0.03 1.5 0.56*0.03 
2.5 0.90 f 0.03 2.0 0.67 f 0.03 

2.5 0.73 f 0.03 
3.0 0.83 i 0 . 0 3  

In order to study this new fractal family, we first calculate df and dmin = v’-’ for a range 
of choices of df. The results are given in tables 1 and 2 for Euclidean dimensions 
d = 2-5. The case cy = 0 ( d ,  = 1 )  corresponds to chemically linear branched polymers 
[ 151. The numerical values given in tables 1 and 2 were found for 1 S 200t, and there 
is reason to believe that they are not the true asymptotic exponents. For example, we 
know that this problem is characterised by a ‘slow crossover’ to the asymptotic regime 
since the case d, = 1 corresponds [ 161 to the kinetic growth walk ( K G W ) ~  Indeed, for 
the case df = 1 and d = 2, our analysis suggests that i = l/dmin = 0.67 while we know 
[17] that for sufficiently large 1, the KGW universality class crosses over to that of the 
self-avoiding random walk, for which dmin = df = 413 exactly so that v’ = l/dmi,, = 314. 
This slow crossover has led to errors in interpreting previous numerical results [ 16, 18§], 
so there is little reason to expect that the same troubles are not present here, especially 
for d > 2 (e.g., the crossover for d = 3 is two orders of magnitude higher than for d = 2 
since self trapping is rare). 

For d = 2 percolation, d, = 1.64 [9-121. Hence we studied in some detail the present 
model for the special case cy =0.64. Of course, a fractal is characterised by as many 
as ten different fractal dimensions [19], so there is no a priori reason to expect that 
percolation and the df = 1.64 case of the present model are identical. Nonetheless, we 
found that v’ = l /dmin = 0.88 is roughly the same value as percolation [9-121, and we 
also found that the ratio of perimeter to mass is close to what one would expect from 

t It is difficult to generate clusters for large I due to self. trapping. 
.$ The kinetic growth walk (KGW) is the unbranched limit of the present model, B ( I )  = 1 for all I [16]. 
5 See also the recent discussion of the ‘slow crossover’ problem [18a]. 
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percolation, ( 1  - p c ) / p ,  = 4071593. Of course, the two models cannot be completely 
identical since chemical shell 1 has exactly ldl-' cluster sites in the present model, while 
in percolation chemical shell 1 has only ldl-' sites on average. This difference is dramatic 
if one considers the application of dl to the quantitative analysis of a forest fire [23]  
set at time t = 0 on a percolation cluster. If each tree ignites only its neighbours on 
successive time steps, and if each tree bums for one unit of time, then in the present 
model there are precisely ldl-' burning trees at time t, while in percolation there are 
an average of ld(-' burning trees. The dispersion about this average is a topic of present 
investigation. 

Next we consider the subtle question of loops. We know that for the special case 
a = 0 ( d f  = l ) ,  loops are irrelevant [ 151.  For small a (a < 0.2),  loops do not visually 
appear on all length scales, while for large a they do. Hence it is tempting to suggest 
that this model has the intriguing feature of a 'loop threshold' a = a,, below which 
loops are irrelevant. The critical properties of the loops near the threshold a = a, is 
a topic for further study. 

In order to study dynamic exponents, we performed exact enumeration [ 14,201 of 
diffusion on these clusters for d = 2. We calculated the diffusion exponent d ,  

t - Rd-,  ( 4 a )  

the 'chemical-space' diffusion exponent d f ,  

t - I d ; ,  

Po - t - d . / * *  

and the fracton (spectral) dimension d,  

Here t is the time and Po is the probability of returning to the origin. The results for 
the exponents are presented in table 1 .  We note that these values are consistent with 
the relations [ l o ,  131 

C = d l / d r = d f , / d , ,  ( 5 a )  

i d s  = d r / d ,  = d f / d f , .  (5b) 

df ,  = df + 1 ,  d ,  = d,-(l+ l / d l ) ,  d ,  = 2dll(dl+ 1 1 ,  ( 5 c )  

and 

The data for small values of dl are also consistent with [ 1 3 ]  

which hold when loops are not relevant, suggesting that loops may not occur on all 
length scales for small dlt. 

It should be noted that the upper critical dimension d,  for the present growth model 
is bounded from above by 4d1. Thus, in general, one might expect that d,  will depend 
on dl. Recently, the growth of clusters in dimensions above d,  was studied by generating 
these clusters on a Cayley tree [21 ] .  Finally, we note that our model with continuously 
tunable df  serves to complement recent growth models for which df and dg are 
continuously tunable [ 221. 

We wish to thank F Leyvraz and I Majid for helpful discussion, W Marshall and the 
Boston University Academic Computing Center for time on the IBM 3081, and the 
NSF and ONR for financial support. 
t Note that the effect of loops is to decrease the value of d,  to the value two as d,  -f 2. 
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